C++ Toolkit Book The UTIL Module

14. The UTIL Module

Created: April 1, 2003
Updated: September 16, 2003

The UTIL API [Library xut i | : include | src]

e Chapter Outline

The UTIL module is a collection of useful classes which can be used in more then one application.
This chapter provides reference material for many of UTIL's facilities. For an overview of the UTIL
module please refer to the UTIL section in the introductory chapter on the C++ Toolkit. The
following is an outline of the topics presented in this chapter:

« Containers

o template<typename Object> class CWeakMapKey

o template<typename Object> class CWeakMap

e Typedefs
e Methods

o template<typename Coordinate> class CRange

e Typedefs

e Methods
o template<typename Object, typename Coordinate = int> class CRangeMap
o template<typename Object, typename Coordinate = int> class CRangeMultiMap
e class CintervalTree

e Thread Pools

o template <typename TRequest> class CBlockingQueue
¢ class CStdRequest

o template <typename TRequest> class CThreadInPool

o class CStdThreadInPool

o template <typename TRequest> class CPoolOfThreads

¢ class CStdPoolOfThreads

14-1

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/util
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/util

C++ Toolkit Book The UTIL Module

+ Miscellaneous Classes

e class CLightString
e class CChecksum

o Input/Output Utility Classes

o class CIStreamBuffer

o class COStreamBuffer

o class CByteSource

e class CStreamByteSource
¢ class CFStreamByteSource
o class CFileByteSource

o class CMemoryByteSource
¢ class CByteSourceReader

¢ class CSubSourceCollector

Test Cases [src/util/test]

Containers

The Container classes are template classes that provide many useful container types. The tem-
plate parameter refers to the types of objects whose collection is being described. An overview of
some of the container classes is presented in the introductory chapter on the C++ Toolkit.

The following classes are described in this section:

o template<typename Object> class CWeakMapKey

o template<typename Object> class CWeakMap

o template<typename Coordinate> class CRange

o template<typename Object, typename Coordinate = int> class CRangeMap

o template<typename Object, typename Coordinate = int> class CRangeMultiMap

class ClntervalTree

template<typename Object> class CWeakMapKey

#i ncl ude <util/weakmap. hpp>

This class is used in conjunction with CWeakMap.
14-2

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/util/test

C++ Toolkit Book The UTIL Module
template<typename Object> class CWeakMap

#i ncl ude <util/weakmap. hpp>

This class is used in conjunction with CWeakMapKey. It is extension for regular maps with
additional feature: it automatically removes elements from map when corresponding key is
destructed. Key is of type CWeakMapKey<Object>.

/1 CGeneric exanple of usage of these tenplates:
#i ncl ude <util/weakmap. hpp>

cl ass CKey
{
public:
CWeakMapKey<st ri ng> m MapKey;
H

voi d Test(void)
{
/'l declare map obj ect
CWeakMap<string> nap;
{
/'l declare tenporary key object
CKey key;
/1 insert string val ue
map. i nsert (key. m MapKey, "val ue");
cout << map. size();
/I ==1
cout << map.enmpty();
/1l == fal se
} /1 end of block: key object is destructed and map forgets about val ue
cout << map.size(); // ==
cout << map.enpty(); // == true

Typedefs

key_type
mapped_t ype
val ue_t ype
iterator

const _iterator

are the same as in standard C++ template map<>.

Methods

size_t size() const;
bool enpty() const;

const _iterator begin() const;
const _iterator end() const;

14-3

C++ Toolkit Book The UTIL Module

const_iterator find() const;
iterator begin();

iterator end();

iterator find();

are the same as in standard C++ template map<>.

voi d insert(key_type& key, const nmapped_type& val ue);
voi d erase(key_type& key);

do the same as corresponding methods of standard C++ template map<>. They differ only in
return type.

template<typename Coordinate> class CRange
Class for storing information about some interval (from:to). From and to points are inclusive.

Typedefs

posi tion_type
synonym of Coordinate.

Methods

CRange();
CRange(position_type from position_type to);

constructors

static position_type Get EnptyFromn();
static position_type Cet EmptyTo();
static position_type GetWol eFrom();
static position_type GetWol eTo();

get special coordinate values

static CRange<position_type> Get Enpty();
stati c CRange<position_type> GetWol e();

get special interval objects

bool HaveEnptyBound() const;

check if any bound have special 'empty' value
bool Havel nfiniteBound() const;

check if any bound have special 'whole' value

bool Enpty() const;

14-4

C++ Toolkit Book The UTIL Module

check if interval is empty (any bound have special 'empty' value or left bound greater then right
bound)

bool Regul ar() const;

check if interval's bounds are not special and length is positive
position_type GetFrom() const;

position_type GetTo() const;

position_type GetLength() const;

get parameters of interval

CRange<posi tion_type>& Set Fron();
CRange<posi tion_type>& Set To();

set bounds of interval

CRange<posi tion_type>& SetLength();

set length of interval leaving left bound (from) unchanged

CRange<posi tion_type>& Set Lengt hDown() ;

set length of interval leaving right bound (to) unchanged

bool Intersecti ngWth(CRange<position_type> range) const;

check if non empty intervals intersect

bool Intersecti ngWthPossi bl yEnpt y(CRange<positi on_type> range) const;
check if intervals intersect

template<typename Object, typename Coordinate = int> class CRangeMap

Class for storing and retrieving data using interval as key. Also allows efficient iteration over inter-
vals intersecting with specified interval. Time of iteration is proportional to amount of intervals
produced by iterator. In some cases, algorithm is not so efficient and may slowdown.

template<typename Object, typename Coordinate = int> class CRangeMultiMap

Almost the same as CRangeMap but allows several values have the same key interval.

class Clnterval Tree

Class with the same functionality as CRangeMap but using different algorithm. It is faster and its
speed is not affected by type of data but it uses more memory (triple as CRangeMap) and, as a
result, less efficient when amount of interval in set is quite big. It uses about 140 bytes per inter-

14-5

C++ Toolkit Book The UTIL Module

val for 64 bit program so you can calculate if CintervalTree is acceptable. For example, it
becomes less efficient than CRangeMap when total memory becomes greater than processor
cache.

Thread Pools

This section provides reference to the classes used to implement a pool of threads. For an intro-
duction to this topic, see the Thread Pools section in the introductory chapter on the C++ Toolkit.
The following classes are discussed in this section:

o template <typename TRequest> class CBlockingQueue
¢ class CStdRequest

o template <typename TRequest> class CThreadInPool

o class CStdThreadInPool

o template <typename TRequest> class CPoolOfThreads

class CStdPoolOfThreads

template <typename TRequest> class CBlockingQueue (%20)

A blocking queue is a first-in-first-out container with the special property that attempting to extract
an element from an empty queue blocks efficiently until more elements are available. Thread
pools use this class internally to manage requests.

class CStdRequest (%20)

Abstract class, derived from CObject, encapsulating requests to aCStdPoolOfThreads. The pure
virtual method void Process(void) gets called when a thread handles the request.

template <typename TRequest> class CThreadInPool (%20)

Abstract class, derived from CThread, for the threads in a pool. Three virtual methods control its
behavior:

virtual void Init(void) {} // called at begi nning of Min()

/1 Called fromMiin() for each request this thread handl es
virtual void ProcessRequest(const TRequest& req) = 0;

virtual void x_OnExit(void) {} // called by OnExit()

class CStdThreadlnPool (%20)

A specialization of CThreadInPool for CRef<CStdRequest>, which simply processes each
request by calling its Process() method.

14-6

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CBlockingQueue&d=C
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CStdRequest&d=C
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CObject&d=C
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CThreadInPool&d=C
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CThread&d=C
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CStdThreadInPool&d=C

C++ Toolkit Book The UTIL Module
template <typename TRequest> class CPoolOfThreads (%20)

Abstract class for a pool of request-handling threads. The constructor takes three arguments: the
maximum size of the pool, the maximum size of the queue of pending requests, and an optional
threshold (compared to the difference between the number of unfinished requests and the num-
ber of threads in the pool) indicating when to create another thread automatically. Due to some
limitations of C++, the constructor does not create any threads itself; you have to call Spawn() for
that. In addition, AcceptRequest() passes requests to the pool, and the protected pure virtual
function NewThread() creates the actual threads.

class CStdPoolOfThreads (%20)

A specialization of CPoolOfThreads for CRef<CStdRequest>; its NewThread() method creates
objects of class CStdThreadInPool. It also introduces a new method:KillAllThreads(), which
causes all the threads in the pool to exit cleanly after finishing all pending requests, and takes an
argument indicating whether to return immediately or to wait for them to finish.

Miscellaneous Classes

The following classes are discussed in this section. For an overview of these classes see the
Lightweight Strings and the Checksum sections in the introductory chapter on the C++ Toolkit.

¢ class CLightString

e class CChecksum

class CLightString

Class for storing information about char strings. Unlike standard C++ string class it doesn't take
ownership over string contents. So, char array containing string value should exist for whole life of
holding CLightString object. This char array should be deleted (if needed) after CLightString
object destruction by some other mechanism. Note that for efficiency sort order of CLightString
differs from standard. It compares first by string length, then by string contents, so here is an
example of sorted data:

" aa"
"az"
R
"aaa"

which, if sorted by standard comparison will look like:

"aa"
"3aa"

14-7

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CPoolOfThreads&d=C
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CStdPoolOfThreads&d=C

C++ Toolkit Book The UTIL Module

"az"
non
naz"

class CChecksum

Class for CRC32 checksum calculation. It also have methods for adding and checking checkum
line in text files.

Input/Output Utility Classes

This section provides reference information on a number of Input/Output Utility classes. For an
overview of these classes see the Stream Support section in the introductory chapter on the C++
Toolkit.

o class CIStreamBuffer

o class COStreamBuffer

o class CByteSource

e class CStreamByteSource
¢ class CFStreamByteSource
o class CFileByteSource

¢ class CMemoryByteSource
¢ class CByteSourceReader

¢ class CSubSourceCollector

class ClStreamBuffer

Class for additional buffering of standard C++ input streams (sometimes standard C++ iostreams
performance quite bad). Uses CByteSource as data source.

class COStreamBuffer

Class for additional buffering of standard C++ output streams (sometimes standard C++
iostreams performance quite bad).

class CByteSource

Abstract class for abstract source of byte data (file, stream, memory etc).

class CStreamByteSource

CByteSource subclass for reading from C++ istream.

14-8

C++ Toolkit Book
class CFStreamByteSource

CByteSource subclass for reading from C++ ifstream.

class CFileByteSource

CByteSource subclass for reading from named file.

class CMemoryByteSource

CByteSource subclass for reading from memory buffer.

class CByteSourceReader

Abstract class for reading data from CByteSource.

class CSubSourceCollector

Abstract class for obtaining piece of CByteSource as separate source.

The UTIL Module

14-9

